Blog Koma - Sebelumnya telah dibahas tentang "Persamaan Garis Lurus dan Grafiknya" serta "Gradien dan Menyusun Persamaan Garis Lurus". Kali ini kita akan membahas tentang hubungan dua garis lurus. Untuk memudahkan mempelajari materi ini, sebaiknya pelajari dahulu materi "Gradien". Hubungan dua garis yang akan dipelajari adalah dua garis yang sejajar berimpit dan tegak lurus berpotongan. Hubungan dua garis lurus sangat penting untuk kita pelajari karena biasanya untuk menentukan besarnya gradien kemiringan suatu garis bergantung dari garis lain. Dengan mengetahui hubungan kedua garis, maka kita pasti bisa menentukan gradien masing-masing. Selain penerapannya pada garis lurus secara langsung, hubungan dua garis khususnya gradiennya juga berguna ketika kita mempelajari materi garis singgung kurva dan garis singgung lingkaran serta garis singgung pada irisan kerucut. Hubungan Dua Garis Lurus Macam - macam Hubungan Dua Garis Lurus Misalkan diketahui dua garis lurus $ ax+by=c \, $ dan $ px+qy=r \, $ . Ada beberapa hubungan yang bisa kita peroleh dari kedua garis tersebut, yaitu *. sejajar Dua garis sejajar syaratnya gradiennya sama $m_1=m_2$. Jika dilihat dari koefisiennya, syarat kedua garis sejajar yaitu $ \frac{a}{p} = \frac{b}{q} $ . Jika $ \frac{a}{p} = \frac{b}{q} = \frac{c}{r} \, $ , maka kedua garis tersebut berimpit. Dan jika $ \frac{a}{p} \neq \frac{b}{q} , \, $ maka kedua garis pasti berpotongan. *. Tegak lurus Dua garis tegak lurus syaratnya perkalian gradien kedua garis hasilnya $ -1 \, $ atau $ m_1 \times m_2 = -1 $. Jika dilihat dari koefisiennya, syarat dua garis tegak lurus yaitu $ \frac{a}{b} = -\frac{q}{p} $ . Contoh 1. Dari Persamaan garis berikut, manakah pasangan garis yang sejajar dan tegak lurus! a. $ 2x - y = 5 $ b. $ 6x + 2y -3 = 0 $ c. $ x + 2y -7 = 0 $ d. $ -4x + 2y = 1 $ e. $ -x + 3y - 7 = 0 $ Penyelesaian *. Kita tentukan gradien masing-masing Konsep $ ax+by=c \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{a}{b} $ a. $ 2x - y = 5 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{2}{-1} = 2 $ b. $ 6x + 2y -3 = 0 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{6}{2} = -3 $ c. $ x + 2y -7 = 0 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{1}{2} $ d. $ -4x + 2y = 1 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{-4}{2} = 2 $ e. $ -x + 3y - 7 = 0 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{-1}{3} = \frac{1}{3} $ *. Garis yang sejajar adalah garis a dan garis d. *. Garis yang tegak lurus adalah garis a dan c, serta garis b dan garis e. 2. Tentukan persamaan garis lurus yang melalui titik -1,-3 dan sejajar dengan garis $ y = -3x + 5 $ ! Penyelesaian garis $ y = -3x + 5 \rightarrow m_1 = -3 $ *. Karena garis yang dicari sejajar dengan garis $ y = -3x + 5, \, $ maka gradiennya sama, sehingga gradien garis yang dicari adalah $ m = m_1 = -3 $ *. Menyusun persamaan garis lurusnya garis melalui titik $x_1,y_1 =-1,-3 \, $ dan gradien $ m = -3 $ $ \begin{align} y - y_1 & = mx-x_1 \\ y - -3 & = -3x-1 \\ y + 3 & = -3x+1 \\ y + 3 & = -3x - 3 \\ y & = -3x - 6 \end{align} $ Jadi, persamaan garisnya adalah $ y = -3x - 6 $ 3. Tentukan persamaan garis lurus yang melalui titik -1,-3 dan tegak lurus dengan garis $ y = -3x + 5 $ ! Penyelesaian garis $ y = -3x + 5 \rightarrow m_1 = -3 $ *. Karena garis yang dicari tegak lurus dengan garis $ y = -3x + 5, \, $ maka $ = -1 \rightarrow -3. m_2 = -1 \rightarrow m_2 = \frac{1}{3} \, $ . artinya gradien garis yang kita cari adalah $ m = \frac{1}{3} $ *. Menyusun persamaan garis lurusnya garis melalui titik $x_1,y_1 =-1,-3 \, $ dan gradien $ m = \frac{1}{3} $ $ \begin{align} y - y_1 & = mx-x_1 \\ y - -3 & = \frac{1}{3}x-1 \\ y + 3 & = \frac{1}{3}x+1 \\ 3y + 9 & = x + 1 \\ x - 3y & = 8 \end{align} $ Jadi, persamaan garisnya adalah $ x - 3y = 8 $ 4. Diketahui garis $ p+1x - 3y = 3 $ tegak lurus dengan garis $ 2x + 2p - 1y + 3 = 0 , \, $ tentukan nilai $ 4p - 1 $ Penyelesaian *. Menentukan gradien masing-masing $ p+1x - 3y = 3 \rightarrow m_1 = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{p+1}{-3} = \frac{p+1}{3} $ $ 2x + 2p - 1y + 3 = 0 \rightarrow m_2 = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{2}{2p-1} $ *. Syarat dua garis tegak lurus $ = -1 $ $ \begin{align} & = -1 \\ \left \frac{p+1}{3} \right . \left - \frac{2}{2p-1} \right & = -1 \\ \left \frac{2p+2}{6p - 3} \right & = 1 \\ 2p + 2 & = 6p - 3 \\ 6p - 2p & = 2 + 3 \\ 4p & = 5 \\ p & = \frac{5}{4} \end{align} $ Sehingga nilai $ 4p - 1 = 4. \frac{5}{4} - 1 = 5 - 1 = 4 $ Jadi, nilai $ 4p-1 = 4 $ Besarnya sudut antara Dua Garis Lurus Misalkan diketahui dua garis lurus $ ax+by=c \, $ dan $ px+qy=r \, $ yang masing-masing memiliki gradien $ m_1 \, $ dan $ m_2 . \, $ Besarnya sudut antara kedua garis adalah $ \alpha , \, $ yang dapat ditentukn dengan rumus $ \tan \alpha = \frac{m_1 - m_2}{1+ } $ Contoh Tentukan besarnya sudut yang dibentuk oleh kedua garis $ y = \sqrt{3}x + 3 \, $ dan garis $ y = -\sqrt{3}x + 7 $ ! Penyelesaian *. Menentukan gradien masing-masing $ y = \sqrt{3}x + 3 \rightarrow m_1 = \sqrt{3} $ $ y = -\sqrt{3}x + 7 \rightarrow m_2 = -\sqrt{3} $ *. Menentukan besar sudut kedua garis $ \begin{align} \tan \alpha & = \frac{m_1 - m_2}{1+ } \\ & = \frac{\sqrt{3} - -\sqrt{3}}{1+\sqrt{3}.-\sqrt{3} } \\ & = \frac{2\sqrt{3}}{1+ -3 } \\ & = \frac{2\sqrt{3}}{-2} \\ \tan \alpha & = -\sqrt{3} \end{align} $ Diperoleh $ \tan \alpha = - \sqrt{3} \, $ , berdasarkan tabel trigonometri maka diperoleh $ \alpha = 120^\circ $ Atau sudut terkecil kedua garis adalah $ 180^\circ - 120^\circ = 60^\circ $ Jadi, besar sudut yang dibentuk oleh kedua garis adalah $ 60^\circ $ . Menentukan perpotongan dua garis lurus Contoh Tentukan persamaan garis lurus yang melalui perpotongan garis $ 3x - y = 2 \, $ dan garis $ 2x + y = 3 \, $ serta tegak lurus dengan garis $ x - 3y + 2 = 0 $ ! Penyelesaian *. Menentukan titik potong kedua garis dengan eliminasi dan substitusi $\begin{array}{cc} 3x - y = 2 & \\ 2x + y = 3 & + \\ \hline 5x = 5 & \\ x = 1 & \end{array} $ Persii $ 2x + y = 3 \rightarrow 2 . 1 + y = 3 \rightarrow y = 3 - 2 = 1 $ Sehingga titik potong kedua garis adalah 1,1 *. Menentukan gradien $ x - 3y + 2 = 0 \rightarrow m_1 = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{1}{-3} = \frac{1}{3} $ *. Karena garis yang dicari tegak lurus dengan garis $ x - 3y + 2 = 0, \, $ maka $ = -1 \rightarrow \frac{1}{3}. m_2 = -1 \rightarrow m_2 = -3 $ . artinya gradien garis yang kita cari adalah $ m = -3 $ *. Menyusun persamaan garis lurusnya garis melalui titik $x_1,y_1 =1,1 \, $ dan gradien $ m = -3 $ $ \begin{align} y - y_1 & = mx-x_1 \\ y - 1 & = -3x-1 \\ y - 1 & = -3x + 3 \\ 3x + y & = 4 \end{align} $ Jadi, persamaan garisnya adalah $ 3x + y = 4 $
Hubungan Dua Garis Lurus – Sobat hitung setelah kemarin kita belajar bagaimana mencari gradien dan persamaan suatu garis, kita sekarang lanjut ke hubungan antar dua garis. Jika sobat punya dua garis lurus dari 2 persamaan linier, maka dua garis lurus itu bisa saja sejajar, tegak lurus, berpotongan, atau tidak bersentuhan. Tegak lurus, sejajar, dan berpotongan itulah yang namanya hubungan dua garis. Bagaimana kejelasan hubungan tersebut? 😀 Berikut rumus dan penjelasannya. Dua Garis Sejajar Dua garis dikatakan memiliki hubungan sejajar jika gradiennya sama. Dua garis sejajar adalah dua garis yang jika sobat panjangkan berapapun tidak akan pernah berpotongan. Misal gradien garis 1 adalah m1 dan gradien garis 2 adalah m2 maka m1 = m2 Contoh Soal Jika sobat punya sebuah garis yang melewati titik 4,3 dan sejajar dengan garis 2x + y +7 = 0, coba sobat tentukan persamaan garis tersebut! Jawab dari persamaan garis 2x + y +7 = 0, buat memudahkan mencari gradien nilai c dianggap tidak ada 2x + y = 0 y = -2x –> didapat gradien garisnya = -2 nah untuk menentukan persamaan garis sobat pakai saja rumus y = mx + c. Masukkan titik 4,3 y = mx + c 3 = -2 4 + c 3 = -8 + c c = 11 jadi persamaan garis lurus sobat adalah y = -2x + 11 atau y + 2x – 11 = 0 kadang ada juga soal seperti ini, sebuah garis melewati titik 13,4 dan 15,1. Jika ada garis yang sejajar dengan garis tersebut melewati titik 6,4 Tentukan persamaan kedua garis tersebut! Jawab. Persamaan garis pertama kita selesaikan dengan rumus y = mx + c –> substitusi titik 13,5 –> 5 = m113 + c titik 16,1 –> 1 = m115 + c ———————————- – 4 = -2m1 m1 = -2 kita masukkan ke salah satu persamaan di atas untuk menemukan nilai c 5 = m113 + c 5 = -213 + c 5 = -26 + c –> c = 31 jadi persamaan garis 1 adalah y = -2x + 31 Persamaan Garis kedua m1 = m2 = -2 y = mx + c 4 = -26 + c 4 = -12 + c c = 16 jadi persamaan garis 2 –> y = -2x + 16 Dua Garis Tegak Lurus Hubungan dua garis saling tegak lurus terjadi ketika perpotongan dua garis tersebut membentuk sudut 90o. Jika garis a memiliki gradien m1 dan garis b memiliki gradien m2 maka rumus hubungan dua garis tersebut m1 x m2 = -1 contoh soal Tentukan hubungan 2 garis berikut g1 3x + 4y = 5 dan g2 4x – 3y = 5 kita cari dulu gradien dari g1 dan g2 3x + 4y = 5 c tidak perlu kita anggap 3x + 4y = 0 4y = -3x –> m1 = -3/4 4x – 3y = 5 c tidak kita anggap 4x – 3y = 0 4x = 3y y = 4/3 x –> m2 = 4/3 m1 x m2 = -3/4 x 4/3 = -1 jadi hubungan garis g1 dan g2 adalah tegak lurus Garis Saling Berpotongan Dua garis saling berpotongan jika keduannya pernah melewati satu titik yang sama hanya 1. Untuk menentukan titik potong tersebut kita bisa menggunakan metode subtitusi maupun elminasi. Jika setelah disubtitusi dan dielminiasi bisa ketemu nilai x dan y maka kedua garis tersebut saling berpotongan. Buat lebih jelanya kita simak ilustrasi berikut. Tentukan persamaan sebuah garis yang sejajar dengan garis 5x – y +12 = 0 dan melalui titik potong antara garis y = 2x – 5 dan y = 3x-7 Jawab Karena sejajar maka gradien garis yang dicari sama dengan gradien garis 5x – y + 12 = 0, gradien didapat 5. Kemudian sobat cari titik potong antara garis y = 2x – 5 dan y = 3x-7, misal dengan substitusi y = 2x – 5 y = 3x – 7 ————— – 0 = -x + 2 x = 2, kita masukkan ke salah satu persamaan untuk mendapatkan niliai y y = 2x – 5 y = 22 -5 y = -1, jadi kedua garis tersebut berpotongan di titik 2,-1 persamaan garis y = mx + c -1 = + c -1 = 10 + c c = -11 jadi persamaan garisnya adalah y = 5x -11 Dua Garis Berpotongan Membentuk Sudut α Sebenarnya hubungan dua buah garis hanya ada 2 berpotongan dan tidak berpotongan. Berpotongan dibagi menjadi dua, tegak lurus sudut 90o dan berpotongan tapi tidak tegak lurus membentuk sudut α. Misal garis g dengan gradien mg berpotongan dengan garis h dengan gradien mh, dan terbentuk sudut α maka dirumuskan mg -mh tan α = ————— 1 + Yuk sobat simak contoh soal berikut, Tentukan besar sudut yang ibentuk oleh garis g y = 3x + 4 dan h y = x + 4 mg -mh tan α = ————— 1 + tan α = 3-1/ 1 + 31 = 1/2 dan arc tan 1/2 = 29,51o. Jadi hubungan dua garis tersebut adalah berpotongan membentuk sudut lancip 29,51o.fungsikuadrat. Blog Koma - Hubungan garis dan parabola (grafik fungsi kuadrat f ( x) = a x 2 + b x + c) yang dimaksud adalah posisi garis pada parabola yaitu garis memotong parabola, menyingung parabola, dan garis tidak memotong atau tidak menyinggung parabola. Materi Hubungan Garis dan Parabola erat kaitannya dengan pertidaksamaan karena dari
Apa Contoh Garis Sejajar?Apa Kondisi Dua Baris Yang Sesuai?Apa Yang Dimaksud Dengan Dua Garis Yang Saling Sejajar?Apa Syarat Dua Garis Dikatakan Berimpit?Apa Yang Dimaksud Dengan Garis Sejajar?Berapa Macam Hubungan Antar Garis? Hubungan dua garis? – gambar dua contoh hubungan antara garis garis adalah gambar silang zebra dan jendela. Gambarnya ada di lampiran kedua. Dua garis paralel akan memiliki kemiringan atau gradien yang sama. Kedua garis akan memiliki arah yang sama. 1. 2 baris yang tidak saling bergantung tidak akan membentuk sudut, tetapi hanya 2 baris dalam arah yang sama dan jarak antara pointer akan sama. 2. Hubungan garis berpotongan akan membentuk sudut di mana ketika garis lurus berpotongan dengan garis lurus lain, itu akan membentuk sudut berikut sudut perawatan sudut dengan jumlah total 180 derajat, sudut penggantian belakang the sudut yang sama,. Apa Contoh Garis Sejajar? Beberapa benda di sekitar kita menunjukkan hubungan garis yang saling sejajar, contohnya sebagai berikut. 1. Lintasan rel kereta api, yang saling sejajar meskipun panjangnya tidak terhingga. 2. Daun yang memiliki tulang sejajar, seperti daun mangga. 3. Zebra cross atau jalur penyeberangan. Apa Kondisi Dua Baris Yang Sesuai? ~ Dua buah garis dikatakan sejajar apabila kedua garis tersebut terletak pada satu bidang datar yang tidak akan berpotongan meskipun diperpanjang tanpa batas. Apa Yang Dimaksud Dengan Dua Garis Yang Saling Sejajar? question. sejajar dua buah garis dikatakan sejajar apabila kedua garis tersebut terletak pada satu bidang datar yang tidak akan berpotongan meskipun diperpanjang tanpa batas. Apa Syarat Dua Garis Dikatakan Berimpit? ~ Dua buah garis yang terletak pada satu bidang datar dikatakan berimpit jika dan hanya jika kedua garis itu memiliki paling sedikit dua titik potong dua titik persekutuan. Apa Yang Dimaksud Dengan Garis Sejajar? Sejalan adalah bahwa kedua baris memiliki arah yang sama. Garis yang ada tidak memiliki poin federal. Garis pemotongan adalah bahwa kedua baris memiliki tepat satu poin federal. Berapa Macam Hubungan Antar Garis? 3 jenis hubungan antar garis garis sejajar. garis berpotongan. garis berimpit.
Mulaidari hubungan antara dua buah garis jenis jenis sudut sifat sifat sudut dan juga satuan yang digunakan untuk sudut. Berikut ini adalah contoh. Untuk mengunduh File Gunakan tombol download dibawah ini. Soal matematika kelas 4 hubungan antar garis. Garis adalah barisan titik yang saling berjejer dan bersampingan.SDMatematikaBahasa IndonesiaIPA TerpaduPenjaskesPPKNIPS TerpaduSeniAgamaBahasa DaerahSMPMatematikaFisikaBiologiBahasa IndonesiaBahasa InggrisGeografiSosiologiSejarahEkonomiPenjaskesPPKNAgamaSeniTeknologi InformasiBahasa DaerahSMAMatematikaFisikaKimiaBiologiBahasa IndonesiaBahasa InggrisSejarahEkonomiGeografiSosiologiPenjaskesPPKNSeniAgamaKewirausahaanTeknologi InformasiBahasa DaerahUTBK/SNBTMatematikaEkonomiGeografiSosiologiBahasa IndonesiaBahasa InggrisSejarahFisikaKimiaBiologiRuangguruRoboguru PlusDafa dan LuluKursus for KidsRuangguru for KidsRuangguru for BusinessRuangujiRuangbacaRuangkelasRuangbelajarRuangpengajarRuangguru PrivatRuangpeduliBerandaHubungan dua garis berikut adalah ....IklanIklanPertanyaanHubungan dua garis berikut adalah .... IklanHEH. EndahMaster TeacherMahasiswa/Alumni Universitas Negeri YogyakartaJawaban terverifikasiIklanPembahasanHubungan dua garis berikut adalah saling tegak dua garis berikut adalah saling tegak BabBentuk Umum Persamaan Garis Lurus dan GrafiknyaKemiringan Garis GradienPersamaan Garis LurusHubungan Dua GarisPerdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS! 0 ratingYuk, beri rating untuk berterima kasih pada penjawab soal!IklanIklanKlaim Gold gratis sekarang!Dengan Gold kamu bisa tanya soal ke Forum sepuasnya, HQJl. Dr. Saharjo Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860Coba GRATIS Aplikasi RoboguruCoba GRATIS Aplikasi RuangguruProduk RuangguruRuangguruRoboguru PlusDafa dan LuluKursus for KidsRuangguru for KidsRuangguru for BusinessRuangujiRuangbacaRuangkelasRuangbelajarRuangpengajarRuangguru PrivatRuangpeduliProduk LainnyaBrain Academy OnlineEnglish AcademySkill AcademyRuangkerjaSchotersBantuan & PanduanKredensial PerusahaanBeasiswa RuangguruCicilan RuangguruPromo RuangguruSyarat & KetentuanKebijakan PrivasiTentang KamiKontak KamiPress KitBantuanKarirFitur RoboguruTopik RoboguruHubungi Kami081578200000info Kami©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia11Gambargaris berikut yang termasuk garis sejajar adalah. Pada video kali ini kita akan membahas Materi Matematika kelas 4 sd semester 2 yaitu. Latihan Soal Hubungan Antar Garis Kelas 4 SDYang saat ini sedang kita. Hitunglah pH larutan a. Aturan sinus dan cosinus menunjukkan hubungan antara sudut sudut pada suatu segitiga.
Hubungan Antar Dua Garis dan Sudut Yang Terbentuk merupakan materi yang mengulas hubungan antar dua garis yang berpotongan serta sudut yang terbentuk dari perpotongan dua garis sejajar oleh sebuah garis. Hubungan dua garis dapat berupa berpotongan, sejajar, berimpit, dan bersilangan. Sedangkan sudut yang terbentuk dari perpotongan dua garis sejajar oleh sebuah garis dapat berupa sudut sehadap, bertolak belakang, dalam bersebrangan, luar bersebrangan, sepihak, dan luar sepihak. Sudut yang terbentuk dari perpotongan dua garis dapat memungkinkan menghitung besar sudut lain jika diketahui besar suatu sudut. Misalkan diketahui besar sebuah sudut dari sudut yang terbentuk pada perpotongan dua garis sejajar oleh sebuah garis. Informasi besar sudut yang diberikan tersebut dapat memungkinkan untuk menghitung besar sudut lain. Bagaimana caranya? sobat idschool dapat mencari tahu cara mengetahui besar sudut dalam hubungan antar sudut melalui ulasan pada halaman ini. Baca juga Persamaan Garis Lurus Materi hubungan antara dua garis dan sudut yang terbentuk sering keluar di ujian nasional. Jadi, sebaiknya sobat idschool menyimak dengan baik materi mengenai hubungan antar dua garis dan sudut yang terbentuk berikut. Table of Contents Hubungan Antar Dua Garis Jenis Sudut dan Besar Sudut yang Terbentuk dari Perpotongan Dua Garis Contoh Soal dan Pembahasan Contoh 1 – Soal Besar Sudut Berpelurus Contoh 2 – Soal Besar Sudut Garis adalah kumpulan titik-titik yang banyaknya tak terhingga yang saling bersebelahan dan memanjang ke kedua arah. Hubungan antara dua garis dapat berupa sejajar, berpotongan, berimpit, dan bersilangan. BerimpitDua garis tersebut dikatakan berimpit jika semua titik pada sebuah garis terletak pada garis lainnya, atau sebaliknya. Dua Garis SejajarKarakteristik dua garis sejajar adalah kedua garis terletak pada satu bidang datar dan tidak mempunyai titik persekutuan titik potong. BerpotonganDua garis dikatakan berpotongan jika dua garis itu mempunyai satu titik persekutuan titik potong. Dua Garis BersilanganDua garis bersilangan jika kedua garis terletak pada bidang yang berbeda dan kedua garis tidak sejajar dan tidak berpotongan. Baca Juga Cara Menentukan Sudut Antara Dua Tali Busur Lingkaran yang Berpotongan Jenis Sudut dan Besar Sudut yang Terbentuk dari Perpotongan Dua Garis Sebelum melanjutkan materi mengenai hubungan antar dua garis dan sudut yang terbentuk, mari kita mengenal sudut terlebih dahulu. Sudut adalah daerah yang dibatasi oleh dua sinar garis yang bertemu di satu titik pangkal. Perhatikan gambar sudut di bawah. Keterangan O = titik pangkal, OA dan OB = kaki sudut, dan ∠AOB = daerah sudut. Dilihat dari besar sudutnya, jenis – jenis sudut meliputi sudut lancip, sudut siku – siku, sudut tumpul, sudut lurus, dan sudut refleks. Kriteria masing – masing jenis sudut dapat disimak pada penjelasan di bawah. Jenis – Jenis Sudut Sudut Lancip 0o ≤ θ < 90o Sudut Siku-Siku θ = 90o Sudut Tumpul 90o < θ < 180o Sudut Lurus θ ≤ 180o Sudut Refleks 180o < θ < 360o Pembahasan hubungan antar sudut juga memuat hubungan sudut komplemen dan suplemen. Apa itu sudut komplemen dan sudut suplemen? Simak penjelasannya berikut. Komplemen ~ Sudut Berpenyiku Hubungan antar sudut komplemenLPenyiku ∠α = ∠βPenyiku ∠β = ∠αJumlah besar ∠α + ∠β = 90o Sudut Berpelurus Suplemen Hubungan antar sudut suplemenPelurus ∠α = ∠βPelurus ∠β = ∠α Jumlah besar ∠α + ∠β = 180o Sudut-Sudut yang Terbentuk Oleh Dua Garis Sejajar dan Dipotong Sebuah Garis Dua buah garis sejajar, yaitu garis g dan garis h, dipotong oleh sebuah garis yang tidak sejajar dengan keduanya. Dari perpotongan garis tersebut akan terbentuk sudut – sudut yang terdiri atas sudut sehadap, bertolak belakang, dalam bersebrangan, luar bersebrangan, sepihak, dan luar sepihak. Perhatikan gambar di bawah! Pasangan sudut-sudut sehadap memiliki besar sudut yang sama∠A1 = ∠B1∠A2 = ∠B2∠A3 = ∠B3∠A4 = ∠B4 Sudut dalam berseberangan mempunyai besar sudut yang sama ∠A4 = ∠B1∠A3 = ∠B2 Sudut luar berseberangan mempunyai besar sudut yang sama∠A1 = ∠B4∠A2 = ∠B3 Pasangan sudut saling bertolak belakang mempunyai besar sudut yang sama∠A1 = ∠A4∠A2 = ∠A3∠B1 = ∠B4∠B2 = ∠B3 Pasangan sudut dalam sepihak jumlah sudutnya adalah 180o∠A3 +∠B1 = 180o∠A4 + ∠B2 = 180o Sudut Luar Sepihak jumlah sudutnya 180o∠A1 + ∠B3 = 180o∠A2 + ∠B4 = 180o Baca Juga Sudut Pusat dan Sudut Keliling pada Lingkaran Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman bahasan hubungan antar dua garis dan sudut di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Soal Besar Sudut Berpelurus Perhatikan gambar berikut! Besar pelurus sudut KLN adalah ….A. 31o B. 72oC. 85o D. 155o Pembahasan Jumlah dua sudut yang saling berpelurus adalah 180o, maka dapat diperoleh persamaan dan penyelesaian untuk mencari nilai x seperti berikut. Mencari nilai x3x + 15o + 2x + 10o = 180o5x + 25o = 180o5x = 180o ‒ 25o5x = 155ox = 155/5 =31o Besar pelurus ∠KLN = besar ∠MLNm ∠MLN = 2x + 10om ∠KLN = 2×31o + 10om ∠KLN = 62o + 10o = 72o Jadi, besar pelurus sudut KLN adalah 72o. Jawaban B Contoh 2 – Soal Besar Sudut Perhatikan gambar berikut! Besar ∠BAC adalah ….A. 78o B. 76o C. 55o D. 50o PembahasanUntuk menyelesaikan jenis soal ini, sobat idschool dapat melakukan dua cara yang berbeda dengan hasil yang sama. Simak kedua cara menyelesaikan soal besar sudut seperti di atas dan pilih cara terbaik yang sobat idschool sukai. Cara 1 Menghitung besar ∠ACB∠ACB + ∠BCD = 180o∠ACB + 114o = 180o∠ACB = 180o – 114o = 66o Selanjutnya hitung nilai x melalui ΔACB, perhatikan ΔABC dan INGAT bahwa jumlah ketiga sudut pada segitiga adalah 180o. ∠BAC + ∠ABC + ∠ACB = 180ox + x + 4o + 66o = 180o 2x + 70o = 180o 2x = 180o – 70o 2x = 110ox = 110/2 = 55o Jadi, besar ∠BAC = x = 55o Cara 2 mencari nilai x dengan cara kedua dapat dikatakan sebagai rumus cepat. Mencari nilai xx + x + 4o = 114o2x = 114o – 4o2x = 110ox = 110/2 = 55o Jadi, besar ∠BAC = x = 55o Jawaban C Oke, sekian materi mengenai hubungan antar dua garis dan sudut yang terbentuk, mudah bukan? Jika sobat idschool memiliki pertanyaan mengenai hubungan antar dua garis dan sudut yang terbentuk bisa tanyakan lewat komentar. Terimakasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Aritmatika Sosial – SMP